BIOMASS FEASIBILITY

Presented by

American Development Institute

TOPICS

- Why Do it?
- Typical Project Opportunities for Municipalities
- Economic Analysis
- Design Considerations

Why Do it?

- Economics
 - Annual Budget Savings
 - Lowest Life Cycle Cost
- Energy Independence
 - Fuel Diversity (Wood, Oil and Gas)
 - Minimize fuel commodity risk
- Reduce Carbon Footprint
 - Typical HS equivalent to removing over 580 vehicles for 30 years

Other Alternatives

- Energy Conservation
- CHP

Consistent Issues

- Where are gas/oil prices headed?
 - Create Scenarios show the sensitivity
- Is there enough Wood locally?
 - Enough wood locally provide for 600 projects
- Where are wood prices headed?
 - Historical prices flat, current prices -Up 20% this year.

Issues to understand

- Requires more attention by staff
- Require 50% more deliveries than Oil
- More moving parts
 - Augers etc.

Typical Project Opportunity for Municipalities

Commodity Market Issues

Wood is significantly cheaper than Fossil Fuel

		V	/ood	N	at Gas	#6 Oil	
\$/MMBTU		Price		F	Price	Price	
		\$/Ton		\$/DTherm		\$/Gal	
\$	2.94	\$	30	\$	2.94	\$ 0.41	
\$	3.92	\$	40	¢	3.92	\$ 0.54	
\$	4.90	\$	50	\$	4.90	\$ 0.09	
\$	5.88	\$	60	\$	5.88	\$ 0.82	
\$	6.86	\$	70	\$	6.86	\$ 0.95	
\$	7.84	\$	80	\$	7.84	\$ 1.09	
\$	8.82	\$	90	\$	8.82	\$ 1.22	
\$	9.80	\$	100	\$	9.80	\$ 1.36	
\$	10.78	\$	110	\$	10.78	\$ 1.50	
\$	11.76	\$	120	\$	11.76	\$ 1.63	
\$	12.75	\$	130	\$	12.75	\$ 1.77	
\$	13.73	\$	140	\$	13.73	\$ 1.90	
\$	14.71	\$	150	\$	14.71	\$ 2.04	
\$	15.69	\$	160	\$	15.69	\$ 2.18	
\$	16.67	\$	170	\$	16.67	\$ 2.31	
\$	17.65	\$	180	\$	17.65	\$ 2.45	
\$	18.63	\$	190	\$	18.63	\$ 2.58	
\$	19.61	\$	200	\$	19.61	\$ 2.72	
\$	20.59	\$	210	\$	20.59	\$ 2.86	
\$	21.57	\$	220	\$	21.57	\$ 2.99	
\$	22.55	\$	230	\$	22.55	\$ 3.13	
\$	23.53	\$	240	\$	23.53	\$ 3.26	
\$	24.51	\$	250	\$	24.51	\$ 3.40	
\$	25.49	\$	260	\$	25.49	\$ 3.54	
\$	26.47	\$	270	\$	26.47	\$ 3.67	
\$	27.45	\$	280	\$	27.45	\$ 3.81	
\$	28.43	\$	290	\$	28.43	\$ 3.94	
\$	29.41	\$	300	\$	29.41	\$ 4.08	
\$	30.39	\$	310	\$	30.39	\$ 4.22	

Wood is 1/3 the cost of Natural Gas

Surrent Price for Commodity

Criteria for site selection

	Least pote	ential →	Greatest potential		
Criterion	1	2	3	4	
Proximity to biomass fuel supply	National	Within 40m	Sub regional	Local	
Sustainability of transport supply				No traffic issues	
Proximity to heat loads	1-3m	1-0.5m	0.5-0.1m	0.1-0m	
Interest from owner	Ambivalent	Neutral	Interested	Enthusiastic	

Area of presentation focus

Typical Project Economics

Fixed and variable construction costs dictate the economics

		Typical	Post ECM	Annual		Max		
		Energy	Energy	Budget	Budget Potential		Typical	
	Size	Intensity	Intensity	After		Biomass	Installed	Payback
Building Type	('1000 Sqft)	(mbtu/sqft)	(mbtu/sqft)	ECM('000)	Savings	Cost ('000)	(yrs)
Public Garage	60	45	30	\$ 2	7	\$ 14	\$ 175	12.1
Library	40	80	50	\$ 3	0	\$ 16	\$ 450	28.0
Town Hall	30	78	45	\$ 2	0	\$ 11	\$ 450	41.4
Fire Station	10	98	53	\$	8	\$ 4	\$ 450	105.5
Elementary School	42	58	42	\$ 2	6	\$ 14	\$ 450	31.7
Middle School	80	72	48	\$ 5	8	\$ 31	\$ 550	17.8
High School	250	78	55	\$ 20	6	\$ 111	\$ 850	7.7

If wood is not free - first "right size" the wood chip facility.

Sample Facility: Typical High School

Typical High School Characteristics

- Larger Building
- Longer Operating Hours
- Higher Energy usage /sqft
- Usually boiler plant away from main bldg
- Steam or Hydronic heating for easy integration
- Larger Parking area (for fuel deliveries)

Design Issues to Consider

- Fuel Sourcing
- Truck delivery logistics
- Storage Size and Type
 - Silo or "walking floor"
- Boiler types
 - Grate system (moving or non-moving)
- Operating Conditions
 - Base load existing system
- Emissions
 - Multi-Cyclone or Bag house

Location issues

New Boiler room and storage area

Widen Road

Typical Installation – Fuel Storage Considerations

Quabbin - Underground

Silo

Typical Installation – Inside the building

Carbon Footprint Reduction

Up to an 87% reduction in Carbon footprint related to heating source

		Tons CO2		Equivalent
		Displaced		Vehicles
		over life	Tons CO2	removed from
	Size	(Natural	Displaced over	road for 30
Building Type	('1000 Sqft)	Gas)	life (Oil)	years
Public Garage	60	9,485	13,070	74
Library	40	11,242	15,490	88
Town Hall	30	8,220	11,327	64
Fire Station	10	3,443	4,744	27
Elementary School	42	8,558	11,792	67
Middle School	80	20,235	27,882	158
High School	250	68,504	94,393	535

John Rizzo PE ADI 401-524-5334 jrizzo@ad-institute.com

Thank you.

